Back to Search Start Over

Secondary electron emission and self-consistent charge transport in semi-insulating samples.

Authors :
Fitting, H.-J.
Touzin, M.
Source :
Journal of Applied Physics. Aug2011, Vol. 110 Issue 4, p044111. 10p.
Publication Year :
2011

Abstract

Electron beam induced self-consistent charge transport and secondary electron emission (SEE) in insulators are described by means of an electron-hole flight-drift model (FDM) now extended by a certain intrinsic conductivity (c) and are implemented by an iterative computer simulation. Ballistic secondary electrons (SE) and holes, their attenuation to drifting charge carriers, and their recombination, trapping, and field- and temperature-dependent detrapping are included. As a main result the time dependent 'true' secondary electron emission rate δ(t) released from the target material and based on ballistic electrons and the spatial distributions of currents j(x,t), charges ρ(x,t), field F(x,t), and potential V(x,t) are obtained where V0 = V(0,t) presents the surface potential. The intrinsic electronic conductivity limits the charging process and leads to a conduction sample current to the support. In that case the steady-state total SE yield will be fixed below the unit: i.e., σ = η + δ < 1. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
110
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
65108541
Full Text :
https://doi.org/10.1063/1.3608151