Back to Search Start Over

Importance of Sialic Acid Residues Illuminated by UveAnimal Imaging Using Phosphoryicholine Self-Assembled Monolayer-Coated Quantum Dots.

Authors :
Ohyanagi, Tatsuya
Nagahori, Noriko
Shimawaki, Ken
Hinou, Hiroshi
Yamashita, Tadashi
Sasaki, Akira
Jin, Takashi
Iwanaga, Toshihiko
Kinjo, Masataka
Nishimura, Shin-Ichiro
Source :
Journal of the American Chemical Society. 8/17/2011, Vol. 133 Issue 32, p12507-12517. 11p.
Publication Year :
2011

Abstract

Glycans are expected to be one of the potential signal molecules for controlling drug targeting/delivery or long-term circulation of biopharmaceuticals. However, the effect of the carbohydrates of artificially glycosylated derivatives on in vivo dynamic distribution profiles after intravenous injection of model animals remains unclear due to the lack of standardized methodology and a suitable platform. We report herein an efficient and versatile method for the preparation of multifunctional quantum dots (QDs) displaying common synthetic glycosides with excellent solubility and long-term stability in aqueous solution without loss of quantum yields. Combined use of an aminooxy-terminated thiol derivative, 11,11'-dithio bis[undec-11-yl 12-(aminooxyacetyl)amino hexa(ethyleneglycol)], and a phosphorylcholine derivative, 11-mercaptoundecylphosphorylcholine, provided QDs with novel functions for the chemical ligation of ketone-functionalized compounds and the prevention of nonspecific protein adsorption concurrently. In vivo near-infrared (NIR) fluorescence imaging of phosphorylcholine self-assembled monolayer (SAM)-coated QDs displaying various simple sugars (glyco-PC-QDs) after administration into the tail vein of the mouse revealed that distinct long-term delocalization over 2 h can be achieved in cases of QDs modified with α-sialic acid residue (Neu5Ac-PC-QDs) and control PC-QDs, while QDs bearing other common sugars, such as α-glucose (Glc-PC-QDs), α-mannose (Man-PC-QDs), α-fucose (Fuc-PC-QDs), lactose (Lac-PC-QDs), β-glucuronic acid (GlcA-PC-QDs), N-acetyl-β-d-glucosamine (GlcNAc-PC-QDs), and N-acetyl-β-d-galactosamine (GalNAc-PC-QDs) residues, accumulated rapidly (5-10 min) in the liver. Sequential enzymatic modifications of GlcNAc-PC-QDs gave Galβ1,4GlcNAc-PC-QDs (LacNAc-PC-QDs), Galβ1,4(Fucα1,3)GlcNAc-PC-QDs (Lex-PC-QDs), Neu5Acα2,3Galβ1,4GlcNAc-PC-QDs (sialyl LacNAc-PC-QDs), and Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-PC-QDs (sialyl Lex-PC-QDs) in quantitative yield as monitored by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses. Live animal imaging uncovered for the first time that Lex-PC-QDs also distributed rapidly in the liver after intravenous injection and almost quenched over 1 h in similar profiles to those of LacNAc-PC-QDs and Lac-PC-QDs. On the other hand, sialyl LacNAc-PC-QDs and sialyl Lex-PC-QDs were still retained stably in the whole body after 2 h, while they showed significantly different in vivo dynamics in the tissue distribution, suggesting that structure/sequence of the neighboring sugar residues in the individual sialyl oligosaccharides might influence the final organ-specific distribution. The present results clearly visualize the evidence of an essential role of the terminal sialic acid residue(s) for achieving prolonged in vivo lifetime and biodistribution of various glyco-PC-QDs as a novel class of functional platforms for nanomaterial-based drug targeting/delivery. A standardized protocol using multifunctional PC-QDs should facilitate live animal imaging of ligand-displayed QDs using versatile NIR fluorescence photometry without influence of size-dependent accumulation/excretion pathway for nanoparticles (e.g., viruses) >10 nm in hydrodynamic diameter by the liver. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027863
Volume :
133
Issue :
32
Database :
Academic Search Index
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
65264452
Full Text :
https://doi.org/10.1021/ja111201c