Back to Search Start Over

Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells.

Authors :
Wei Chen
Tao Xu
Feng He
Wei Wang
Cheng Wang
Joseph Strzalka
Yun Liu
Jianguo Wen
Dean J. Miller
Jihua Chen
Kunlun Hong
Luping Yu
Seth B. Darling
Source :
Nano Letters. Sep2011, Vol. 11 Issue 9, p3707-3713. 7p.
Publication Year :
2011

Abstract

PTB7 semiconducting copolymer comprising thieno[3,4-b]thiophene and benzodithiophene alternating repeat units set a historic record of solar energy conversion efficiency (7.4%) in polymer/fullerene bulk heterojunction solar cells. To further improve solar cell performance, a thorough understanding of structure–property relationships associated with PTB7/fullerene and related organic photovoltaic (OPV) devices is crucial. Traditionally, OPV active layers are viewed as an interpenetrating network of pure polymers and fullerenes with discrete interfaces. Here we show that the active layer of PTB7/fullerene OPV devices in fact involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, indicating that the nanostructural characteristics at multiple length scales is one of the key factors determining the performance of PTB7 copolymer, and likely most polymer/fullerene systems, in OPV devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15306984
Volume :
11
Issue :
9
Database :
Academic Search Index
Journal :
Nano Letters
Publication Type :
Academic Journal
Accession number :
65454275
Full Text :
https://doi.org/10.1021/nl201715q