Back to Search Start Over

ALTERNATIVE DECOMPOSITION OF TWO-QUTRIT PURE STATES AND ITS RELATION WITH ENTANGLEMENT INVARIANTS.

Authors :
GU, RUI-JUAN
ZHANG, FU-LIN
FEI, SHAO-MING
CHEN, JING-LING
Source :
International Journal of Quantum Information. Sep2011, Vol. 9 Issue 6, p1499-1509. 11p. 1 Graph.
Publication Year :
2011

Abstract

Based on maximally entangled states in the full- and sub-spaces of two-qutrits, we present an alternative decomposition of two-qutrit pure states in a form $|\Psi\rangle = \frac{p_{1}}{\sqrt{3}}(|00\rangle + |11\rangle + |22\rangle) + \frac{p_{2}}{\sqrt{2}}(|01\rangle + |12\rangle) + p_{3}e^{i\theta}|02\rangle$. Similar to the Schmidt decomposition, all two-qutrit pure states can be transformed into the alternative decomposition under local unitary transformations, and the parameter p1 is shown to be an entanglement invariant. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02197499
Volume :
9
Issue :
6
Database :
Academic Search Index
Journal :
International Journal of Quantum Information
Publication Type :
Academic Journal
Accession number :
66798478
Full Text :
https://doi.org/10.1142/S0219749911008040