Back to Search Start Over

Pathways for Communicating the Effects of Stratospheric Ozone to the Polar Vortex: Role of Zonally Asymmetric Ozone.

Authors :
Albers, John R.
Nathan, Terrence R.
Source :
Journal of the Atmospheric Sciences. Mar2012, Vol. 69 Issue 3, p785-801. 17p. 2 Diagrams, 1 Chart, 5 Graphs.
Publication Year :
2012

Abstract

A mechanistic model that couples quasigeostrophic dynamics, radiative transfer, ozone transport, and ozone photochemistry is used to study the effects of zonal asymmetries in ozone (ZAO) on the model's polar vortex. The ZAO affect the vortex via two pathways. The first pathway (P1) hinges on modulation of the propagation and damping of a planetary wave by ZAO; the second pathway (P2) hinges on modulation of the wave-ozone flux convergences by ZAO. In the steady state, both P1 and P2 play important roles in modulating the zonal-mean circulation. The relative importance of wave propagation versus wave damping in P1 is diagnosed using an ozone-modified refractive index and an ozone-modified vertical energy flux. In the lower stratosphere, ZAO cause wave propagation and wave damping to oppose each other. The result is a small change in planetary wave drag but a large reduction in wave amplitude. Thus in the lower stratosphere, ZAO 'precondition' the wave before it propagates into the upper stratosphere, where damping due to photochemically accelerated cooling dominates, causing a large reduction in planetary wave drag and thus a colder polar vortex. The ability of ZAO within the lower stratosphere to affect the upper stratosphere and lower mesosphere is discussed in light of secular and episodic changes in stratospheric ozone. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00224928
Volume :
69
Issue :
3
Database :
Academic Search Index
Journal :
Journal of the Atmospheric Sciences
Publication Type :
Academic Journal
Accession number :
72246263
Full Text :
https://doi.org/10.1175/JAS-D-11-0126.1