Back to Search Start Over

Langmuir probe diagnostic studies of pulsed hydrogen plasmas in planar microwave reactors.

Authors :
Rousseau, A.
Teboul, E.
Lang, N.
Hannemann, M.
Röpcke, J.
Source :
Journal of Applied Physics. 10/1/2002, Vol. 92 Issue 7, p3463. 9p. 2 Diagrams, 10 Graphs.
Publication Year :
2002

Abstract

Langmuir probe techniques have been used to study time and spatially resolved electron densities and electron temperatures in pulse-modulated hydrogen discharges in two different planar microwave reactors (ƒ[sub microwave]=2.45 GHz, t[sub pulse] = 1 ms). The reactors are (i) a standing-wave radiative slotted waveguide reactor and (ii) a modified traveling-wave radiative slotted waveguide reactor, which generate relatively large plasmas over areas from about 350 to 500 cm². The plasma properties of these reactor types are of particular interest as they have been used for basic research and for plasma processing; for example, for surface treatment and layer deposition. In the present study the pressures and microwave powers in the reactors were varied between 33 and 55 Pa and 600 and 3600 W, respectively. In regions with high electromagnetic fields, shielded Langmuir probes were used to avoid disturbances of the probe characteristic. Close to the microwave windows of the reactors both the electron density and the electron temperature showed strong inhomogeneities. In the standing-wave reactor the inhomogeneity was found to be spatially modulated by the position of the slots. The maximum value of the electron temperature was about 10 eV, and the electron density varied between 0.2 and 14 × 10[sup 11] cm[sup -3]. The steady-state electron temperature in a discharge pulse was reached within a few tens of microseconds, whereas the electron density needed some hundreds of microseconds to reach a steady state. Depending on the reactor the electron density reached a maximum between 80 and 200 µs after the beginning of the pulse. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
92
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
7355430
Full Text :
https://doi.org/10.1063/1.1497454