Back to Search
Start Over
The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2V617F myeloproliferative neoplasm cells
- Source :
-
Experimental Hematology . Aug2012, Vol. 40 Issue a8, p634-645.e10. 0p. - Publication Year :
- 2012
-
Abstract
- We investigated the mechanism of action of the histone deacetylase inhibitor Givinostat (GVS) in Janus kinase 2 (JAK2)V617F myeloproliferative neoplasm (MPN) cells. GVS inhibited colony formation and proliferation and induced apoptosis at doses two- to threefold lower in a panel of JAK2V617F MPN compared to JAK2 wild-type myeloid leukemia cell lines. By global gene expression analysis, we observed that at 6 hours, GVS modulated 293 common genes in the JAK2V617F cell lines HEL and UKE1, of which 19 are implicated in cell cycle regulation and 33 in hematopoiesis. In particular, the hematopoietic transcription factors NFE2 and C-MYB were downmodulated by the drug specifically in JAK2V617F cells at both the RNA and protein level. GVS also inhibited JAK2-signal transducer and activator of transcription 5-extracellular signal-regulated kinase 1/2 phosphorylation, but modulation of NFE2 and C-MYB was JAK2-independent, as shown using the JAK2 inhibitor TG101209. GVS had a direct effect on the NFE2 promoters, as demonstrated by specific enrichment of associated histone H3 acetylated at lysine 9. Modulation by GVS of NFE2 was also observed in freshly isolated CD34+ cells from MPN patients, and was accompanied by inhibition of their proliferation and differentiation toward the erythroid lineage. We conclude that GVS acts on MPN cells through dual JAK2-signal transducer and activator of transcription 5-extracellular signal-regulated kinase 1/2 inhibition and downmodulation of NFE2 and C-MYB transcription. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0301472X
- Volume :
- 40
- Issue :
- a8
- Database :
- Academic Search Index
- Journal :
- Experimental Hematology
- Publication Type :
- Academic Journal
- Accession number :
- 77965965
- Full Text :
- https://doi.org/10.1016/j.exphem.2012.04.007