Back to Search Start Over

Trastuzumab Produces Therapeutic Actions by Upregulating miR-26a and miR-30b in Breast Cancer Cells.

Authors :
Ichikawa, Takehiro
Sato, Fumiaki
Terasawa, Kazuya
Tsuchiya, Soken
Toi, Masakazu
Tsujimoto, Gozoh
Shimizu, Kazuharu
Source :
PLoS ONE. Feb2012, Vol. 7 Issue 2, p1-11. 11p.
Publication Year :
2012

Abstract

Objective: Trastuzumab has been used for the treatment of HER2-positive breast cancer (BC). However, a subset of BC patients exhibited resistance to trastuzumab therapy. Thus, clarifying the molecular mechanism of trastuzumab treatment will be beneficial to improve the treatment of HER2-positive BC patients. In this study, we identified trastuzumab-responsive microRNAs that are involved in the therapeutic effects of trastuzumab. Methods and Results: RNA samples were obtained from HER2-positive (SKBR3 and BT474) and HER2-negetive (MCF7 and MDA-MB-231) cells with and without trastuzumab treatment for 6 days. Next, we conducted a microRNA profiling analysis using these samples to screen those microRNAs that were up- or down-regulated only in HER2-positive cells. This analysis identified miR-26a and miR-30b as trastuzumab-inducible microRNAs. Transfecting miR-26a and miR-30b induced cell growth suppression in the BC cells by 40% and 32%, respectively. A cell cycle analysis showed that these microRNAs induced G1 arrest in HER2-positive BC cells as trastuzumab did. An Annexin-V assay revealed that miR-26a but not miR-30b induced apoptosis in HER2-positive BC cells. Using the prediction algorithms for microRNA targets, we identified cyclin E2 (CCNE2) as a target gene of miR-30b. A luciferase-based reporter assay demonstrated that miR-30b post-transcriptionally reduced 27% (p = 0.005) of the gene expression by interacting with two binding sites in the 3'-UTR of CCNE2. Conclusion: In BC cells, trastuzumab modulated the expression of a subset of microRNAs, including miR-26a and miR-30b. The upregulation of miR-30b by trastuzumab may play a biological role in trastuzumab-induced cell growth inhibition by targeting CCNE2. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
2
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
79994324
Full Text :
https://doi.org/10.1371/journal.pone.0031422