Back to Search Start Over

Rotation, activity, and lithium abundance in cool binary stars.

Authors :
Strassmeier, K. G.
Weber, M.
Granzer, T.
Järvinen, S.
Source :
Astronomische Nachrichten. Oct2012, Vol. 333 Issue 8, p663-705. 43p.
Publication Year :
2012

Abstract

We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and VI and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 R = 55000 échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, V - I and/or b - y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74% of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26% (61 systems) are rotating asynchronously of which half have Prot > Porb and e > 0. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, Prot α T-7eff, for both single and binaries, main sequence and evolved. For inactive, single giants with Prot > 100 d, the relation is much weaker, Prot α T-1.12eff. Our data also indicate a period-activity relation for Hα of the form RHα α P0.24rot for binaries and RHα α P-0.14rot for singles. Its power-law difference is possibly significant. Lithium abundances in our (field-star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 1-2 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near Teff ≈ 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) α -0.6 log Prot but again with a dispersion of as large as 3-4 orders of magnitude (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00046337
Volume :
333
Issue :
8
Database :
Academic Search Index
Journal :
Astronomische Nachrichten
Publication Type :
Academic Journal
Accession number :
82141848
Full Text :
https://doi.org/10.1002/asna.201211719