Back to Search Start Over

Pharmacological Inhibition of Caspase-2 Protects Axotomised Retinal Ganglion Cells from Apoptosis in Adult Rats.

Authors :
Vigneswara, Vasanthy
Berry, Martin
Logan, Ann
Ahmed, Zubair
Source :
PLoS ONE. Dec2012, Vol. 7 Issue 12, p1-9. 9p.
Publication Year :
2012

Abstract

Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL+ RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with z-VDVAD suppressed cleaved caspase-2 activation by =85% at 3-4 days after ONC. Increasing concentrations of z-VDVAD protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as glaucoma and optic neuritis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
12
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
84711223
Full Text :
https://doi.org/10.1371/journal.pone.0053473