Back to Search Start Over

Crystal Structure of the Hexachlorocyclohexane Dehydrochlorinase (LinA-Type2): Mutational Analysis, Thermostability and Enantioselectivity.

Authors :
Macwan, Ankit S.
Kukshal, Vandna
Srivastava, Nidhi
Javed, Saleem
Kumar, Ashwani
Ramachandran, Ravishankar
Source :
PLoS ONE. Nov2012, Vol. 7 Issue 11, Special section p1-12. 12p.
Publication Year :
2012

Abstract

Hexachlorocyclohexane dehydrochlorinase (LinA) mediates dehydrochlorination of γ-HCH to 1, 3, 4, 6-tetrachloro-1,4-cyclohexadiene that constitutes first step of the aerobic degradation pathway. We report the 3.5 Å crystal structure of a thermostable LinA-type2 protein, obtained from a soil metagenome, in the hexagonal space group P6322 with unit cell parameters a = b = 162.5, c = 186.3 Å, respectively. The structure was solved by molecular replacement using the coordinates of LinA-type1 that exhibits mesophile-like properties. Structural comparison of LinA-type2 and -type1 proteins suggests that thermostability of LinA-type2 might partly arise due to presence of higher number of ionic interactions, along with 4% increase in the intersubunit buried surface area. Mutational analysis involving the differing residues between the - type1 and -type2 proteins, circular dichroism experiments and functional assays suggest that Q20 and G23 are determinants of stability for LinA-type2. It was earlier reported that LinA-type1 exhibits enantioselectivity for the (-) enantiomer of α-HCH. Contrastingly, we identified that -type2 protein prefers the (+) enantiomer of α-HCH. Structural analysis and molecular docking experiments suggest that changed residues K20Q, L96C and A131G, vicinal to the active site are probably responsible for the altered enantioselectivity of LinA-type2. Overall the study has identified features responsible for the thermostability and enantioselectivity of LinA-type2 that can be exploited for the design of variants for specific biotechnological applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
11
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
84716924
Full Text :
https://doi.org/10.1371/journal.pone.0050373