Back to Search Start Over

Robust Visual Tracking via Structured Multi-Task Sparse Learning.

Authors :
Zhang, Tianzhu
Ghanem, Bernard
Liu, Si
Ahuja, Narendra
Source :
International Journal of Computer Vision. Jan2013, Vol. 101 Issue 2, p367-383. 17p. 3 Color Photographs, 1 Diagram, 2 Charts, 1 Graph.
Publication Year :
2013

Abstract

In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing $$\ell _{p,q}$$ mixed norms $$(\text{ specifically} p\in \{2,\infty \}$$ and $$q=1),$$ we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular $$L_1$$ tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, ) is a special case of our MTT formulation (denoted as the $$L_{11}$$ tracker) when $$p=q=1.$$ Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09205691
Volume :
101
Issue :
2
Database :
Academic Search Index
Journal :
International Journal of Computer Vision
Publication Type :
Academic Journal
Accession number :
85190126
Full Text :
https://doi.org/10.1007/s11263-012-0582-z