Back to Search Start Over

Constant pressure hydraulic energy storage through a variable area piston hydraulic accumulator

Authors :
Van de Ven, James D.
Source :
Applied Energy. May2013, Vol. 105, p262-270. 9p.
Publication Year :
2013

Abstract

Abstract: Hydraulic accumulators are used in a variety of applications to minimize the pressure variation in hydraulic circuits and to store energy. Conventional hydraulic accumulators suffer from two major limitations, the hydraulic system pressure varies with the quantity of energy stored and the energy density is significantly lower than other energy domains. In this paper, a novel hydraulic accumulator is presented that uses a piston with an area that varies with stroke to maintain a constant hydraulic system pressure while the gas pressure changes. The variable area piston is sealed with a fabric reinforced rolling diaphragm. In this work, the piston radius profile is developed as a function of the piston displacement and then transformed into a function of the axial contact location between the piston and the diaphragm. The piston profile was solved numerically for a variety of conditions using both transformation methods to illustrate the geometric design trade-offs. Using a variable area gas piston with a fixed cylinder area, the maximum gas volume ratio was 1.8:1. An analysis of the energy density revealed that the constant pressure accumulator provides a 16% improvement in energy density over a conventional accumulator at a volume ratio of 2.71:1 and also exceeds the maximum energy density of a conventional accumulator at the lower volume ratio of 1.8:1. This new promising technology maintains a constant hydraulic system pressure independent of the quantity of energy stored, easing system control and allowing other circuit components to be downsized to meet the same power requirements, while also increases the energy storage density. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03062619
Volume :
105
Database :
Academic Search Index
Journal :
Applied Energy
Publication Type :
Academic Journal
Accession number :
85904752
Full Text :
https://doi.org/10.1016/j.apenergy.2012.12.059