Back to Search Start Over

Introduction: The 36-18 Ma southern Great Basin, USA, ignimbrite province and flareup: Swarms of subduction-related supervolcanoes.

Authors :
Best, Myron G.
Christiansen, Eric H.
Gromme, Sherman
Source :
Geosphere. Apr2013, Vol. 9 Issue 2, p260-274. 15p. 1 Color Photograph, 2 Graphs, 4 Maps.
Publication Year :
2013

Abstract

During the middle Cenozoic, from 36 to 18 Ma, one of the greatest global expressions of long-lived, explosive silicic volcanism affected a large segment of southwestern North America, including central Nevada and southwestern Utah in the southern Great Basin. The southern Great Basin ignimbrite province, resulting from this flareup, harbors several tens of thousands of cubic kilometers of ash-flow deposits. They were created by more than two hundred explosive eruptions, at least thirty of which were super-eruptions of more than 1000 km3. Forty-two exposed calderas are as much as 60 km in diameter. As in other parts of southwestern North America affected by the ignimbrite flareup, rhyolite ash-flow tuffs are widespread throughout the southern Great Basin ignimbrite province. However, the province differs in two significant respects. First, extrusions of contemporaneous andesitic lavas were minimal. Their volume is only about 10% of the ignimbrite volume. Unlike other contemporaneous volcanic fields in southwestern North America, only a few major composite (strato-) volcanoes predated and developed during the flareup. Second, the central sector and especially the eastern sector of the province experienced super-eruptions of relatively uniform, crystal-rich dacite magmas; resulting deposits of these monotonous intermediates measure on the order of 16,000 km3. Following this 4 m.y. event, very large volumes of unusually hot and dry trachydacitic magmas were erupted. These two types of magmas and their erupted volumes are apparently without parallel in the middle Cenozoic of southwestern North America. A fundamental goal of this themed issue is to present basic stratigraphic, compositional, chronologic, and paleomagnetic data on the unusually plentiful and voluminous ignimbrites in the southern Great Basin ignimbrite province. These data permit rigorous correlations of the vast outflow sheets that span between mountain-range exposures across intervening valleys as well as correlation of the sheets with often-dissimilar accumulations of tuffwithin dismembered source calderas. Well-exposed collar zones of larger calderas reveal complex wall-collapse breccias. Calculated ignimbrite dimensions in concert with precise 40Ar/39Ar ages provide insights on the growth and longevity of the colossal crustal magma systems. Exactly how these subduction-related magma systems were sustained for millions of years to create multicyclic super-eruptions at a particular focus remains largely unanswered. What factors created eruptive episodes lasting millions of years separated by shorter intervals of inactivity? What might have been the role played by tears in the subducting plate focusing a high rate of mantle magma flux into the crust? What role might have been played by an unusually thick and still-warm crust inherited from earlier orogenies? Are the numerous super-eruptions, especially of the unusual monotonous intermediates and succeeding trachydacitic eruptions, during the Great Basin ignimbrite flareup simply a result of the coupling effect of high mantlemagma flux and a thick crust, or did other factors play a role? [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1553040X
Volume :
9
Issue :
2
Database :
Academic Search Index
Journal :
Geosphere
Publication Type :
Academic Journal
Accession number :
86717722
Full Text :
https://doi.org/10.1130/GES00870.1