Back to Search Start Over

Noninvasive bioluminescence imaging of dengue virus infection in the brain of A129 mice.

Authors :
Li, Xiao-Feng
Deng, Yong-Qiang
Zhao, Hui
Ye, Qing
Wang, Hong-Jiang
Li, Shi-Hua
Zhu, Shun-Ya
Shi, Pei-Yong
Qin, E-De
Zhang, Bo
Qin, Cheng-Feng
Source :
Applied Microbiology & Biotechnology. May2013, Vol. 97 Issue 10, p4589-4596. 8p.
Publication Year :
2013

Abstract

Dengue virus (DENV) infection is one of the most important public health threats globally; however, no vaccines or effective antivirals are currently available. The bioluminescence imaging technique has emerged as a powerful tool for studies on viral pathogenesis in vitro and in vivo. In this study, using a recombinant DENV that stably expressed Renilla luciferase (Rluc-DENV), we used bioluminescence for imaging of DENV infection in the brain of A129 mice that lacked type I interferon receptors. Upon intracranial inoculation with Rluc-DENV, A129 mice developed typical neurological symptoms and rapidly succumbed to viral infection. Real-time bioluminescence intensity analysis revealed the replication kinetics of Rluc-DENV in the brain of A129 mice. Linear regression analyses showed a good correlation between photon flux and viral titers ( R = 0.9923). Finally, the bioluminescence model was validated using a known mouse monoclonal antibody, 2A10G6, and the therapeutic effects of this neutralizing antibody were readily monitored by live imaging in the same animal. The noninvasive bioluminescence imaging of DENV infection as described here shows distinct advantages over traditional animal models and provides a powerful tool for potential antiviral or vaccine assays against DENV infection in vivo. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01757598
Volume :
97
Issue :
10
Database :
Academic Search Index
Journal :
Applied Microbiology & Biotechnology
Publication Type :
Academic Journal
Accession number :
87478341
Full Text :
https://doi.org/10.1007/s00253-013-4799-8