Back to Search Start Over

Determination of the operating range of CO2 conversion and syngas production in dry auto-thermal reforming.

Authors :
Lai, Ming-Pin
Horng, Rong-Fang
Lai, Wei-Hsiang
Lee, Chiou-Hwang
Source :
International Journal of Hydrogen Energy. May2013, Vol. 38 Issue 14, p5705-5712. 8p.
Publication Year :
2013

Abstract

Abstract: A porous medium-catalyst hybrid reformer for CO2 conversion by dry auto-thermal reforming (DATR) was investigated in this study, and its operating range was discovered. The hybrid design was used to enhance the oxidative heat release by internal heat recirculation during exothermic reaction conditions, thereby increasing the CO2 conversion efficiency. The experimental results show that the CO2 conversion could be enhanced with higher catalyst inlet temperatures. The examination of the operating range of DATR showed that the CO2 conversion efficiency increased at higher reaction temperatures and CO2/CH4 ratios (≧1). Moreover, DATR in high temperature conditions must be carried out with high O2/CH4 ratios. Under these conditions of high oxygen content, CO2 generation and reduction reactions occur simultaneously. Overall, optimal CO2 conversion can be obtained with an O2/CO2 ratio of approximately 0.5. At these conditions, CO2 conversion efficiency can reach approximately 13% without external heat addition. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03603199
Volume :
38
Issue :
14
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
89071689
Full Text :
https://doi.org/10.1016/j.ijhydene.2013.03.025