Back to Search Start Over

Enhanced photocatalytic hydrogen evolution based on efficient electron transfer in triphenylamine-based dye functionalized Au@Pt bimetallic core/shell nanocomposite.

Authors :
Cheng, Manhuan
Zhu, Mingshan
Du, Yukou
Yang, Ping
Source :
International Journal of Hydrogen Energy. Jul2013, Vol. 38 Issue 21, p8631-8638. 8p.
Publication Year :
2013

Abstract

Abstract: An efficient photocatalytic hydrogen evolution system based on triphenylamine-based dye functionalized bimetallic Au@Pt core/shell nanocomposite (Au@Pt-TPAD) was reported. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV–vis absorption spectra suggested that Au@Pt-TPAD nanocomposite consisted of a bimetallic nanoparticle with Au core and Pt shell nanostructure. The photoelectrochemical result suggested that photoinduced electrons could efficiently transfer from the triphenylamine derivative molecules to the bimetallic nanoparticles. Photocatalytic results showed that the Au@Pt2-TPAD bimetallic nanocomposite could be used as a stable photoinduced H2 evolution photocatalyst. Compared with the monometallic counterpart (Au-TPAD or Pt-TPAD), the bimetallic nanocomposite showed much higher catalytic activity for the photocatalytic hydrogen evolution. The amount of hydrogen evolution on the optimal catalyst under 12 h UV–vis light irradiation was about 37.5 μmol. The enhancement of the photocatalytic activity might be attributed to the synergistic effect between the two metals in bimetallic nanoparticles with core/shell structure. This investigation might open up new opportunities for the development of dye functionalized heterometallic nanocomposite with enhanced photocatalytic performance. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03603199
Volume :
38
Issue :
21
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
89133601
Full Text :
https://doi.org/10.1016/j.ijhydene.2013.05.040