Back to Search Start Over

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

Authors :
Najmaei, Sina
Liu, Zheng
Zhou, Wu
Zou, Xiaolong
Shi, Gang
Lei, Sidong
Yakobson, Boris I.
Idrobo, Juan-Carlos
Ajayan, Pulickel M.
Lou, Jun
Source :
Nature Materials. Aug2013, Vol. 12 Issue 8, p754-759. 6p. 4 Color Photographs, 1 Graph.
Publication Year :
2013

Abstract

Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14761122
Volume :
12
Issue :
8
Database :
Academic Search Index
Journal :
Nature Materials
Publication Type :
Academic Journal
Accession number :
89266219
Full Text :
https://doi.org/10.1038/nmat3673