Back to Search Start Over

Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: A global analysis.

Authors :
Kowalska, Kamila
Munir, Shoaib
Roszkowski, Leszek
Sessolo, Enrico Maria
Trojanowski, Sebastian
Sming Tsai, Yue-Lin
Source :
Physical Review D: Particles, Fields, Gravitation & Cosmology. Jun2013, Vol. 87 Issue 11, p1-23. 23p.
Publication Year :
2013

Abstract

We present the first global analysis of the constrained next-to-minimal supersymmetric standard model that investigates the impact of the recent discovery of a 126 GeV Higgs-like boson, of the observation of a signal for branching ratio BR(BS → μ+μ-), and of constraints on supersymmetry from ~5/fb of data accumulated at the LHC, as well as of other relevant constraints from colliders, flavor physics and dark matter. We consider three possible cases, assuming in turn that the discovered Higgs boson is (i) the lightest Higgs boson of the model; (ii) the next-to-lightest Higgs boson; and (iii) a combination of both roughly degenerate in mass. The likelihood function for the Higgs signal uses signal rates in the yy and ZZ --> 4/ channels, while that for the Higgs exclusion limits assumes decay through the yy, TT, ZZ and W+W- channels. In all cases considered we identify the 68% and 95% credible posterior probability regions in a Bayesian approach. We find that, when the constraints are applied with their respective uncertainties, the first case shows strong CMSSM-like behavior, with the stau coannihilation region featuring highest posterior probability, the best-fit point, a correct mass of the lightest Higgs boson and the lighter top squark mass in the ballpark of 1 TeV. We also expose in this region a linear relationship between the trilinear couplings of the stau and the top squark, witii both of them being strongly negative as enforced by the Higgs mass and the relic density, which outside of the stau coannihilation region show some tension. The second and the third case, on the other hand, while allowed are disfavored by the constraints from direct detection of dark matter and from BR(BS → μ+μ-). Without the anomalous magnetic moment of the muon the fit improves considerably, especially for negative effective /x parameter. We discuss how the considered scenarios could be tested further at die LHC and in dark matter searches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24700010
Volume :
87
Issue :
11
Database :
Academic Search Index
Journal :
Physical Review D: Particles, Fields, Gravitation & Cosmology
Publication Type :
Periodical
Accession number :
89603311
Full Text :
https://doi.org/10.1103/PhysRevD.87.115010