Back to Search Start Over

A study of lithium ion batteries cycle aging by thermodynamics techniques.

Authors :
Maher, Kenza
Yazami, Rachid
Source :
Journal of Power Sources. Feb2014, Vol. 247, p527-533. 7p.
Publication Year :
2014

Abstract

Abstract: Lithium ion batteries (LiB) are cycled under a galvanostatic regime (∼C/2-rate) between 2.75 V and 4.2 V for up to 1000 cycles. After each completed 100 cycles, the discharge capacity, capacity loss, average discharge potential were determined under the same C/2 rate. Then cells undergo an additional charge and discharge cycle at C/6 rate followed by a thermodynamics measurements test. This enables open-circuit potential (OCP), entropy (ΔS) and enthalpy (ΔH) data to be assessed. It is found that with increasing cycle number, the entropy and enthalpy profiles show more significant changes than those observed in the discharge and the OCP curves especially at particular SOC and OCP values. These differences are attributed to the higher sensitivity of entropy and enthalpy state functions to changes in the crystal structure of the graphite anode and the lithiated cobalt oxide (LCO) induced by cycle aging compared to the free energy ΔG (OCP) alone. The thermodynamics data are supported by post-mortem X-ray diffractometry (XRD) and Raman scattering (RS) analyses on the electrode materials. The results show important LCO crystal structure degradation, whereas, surprisingly, the graphite anode remains almost unaffected by heavy cycling, if not improved. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03787753
Volume :
247
Database :
Academic Search Index
Journal :
Journal of Power Sources
Publication Type :
Academic Journal
Accession number :
91739893
Full Text :
https://doi.org/10.1016/j.jpowsour.2013.08.053