Back to Search Start Over

The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels.

Authors :
Kim, Kyunghee X.
Beurg, Maryline
Hackney, Carole M.
Furness, David N.
Mahendrasingam, Shanthini
Fettiplace, Robert
Source :
Journal of General Physiology. Nov2013, Vol. 142 Issue 5, p493-505. 13p.
Publication Year :
2013

Abstract

Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel-like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bundle deflections in mice with null mutations of Tmc1, Tmc2, or both. During the first postnatal week, we observed a normal MT current in hair cells lacking Tmc1 or Tmc2; however, in the absence of both isoforms, we recorded a large MT current that was phase-shifted 180°, being evoked by displacements of the hair bundle away from its tallest edge rather than toward it as in wild-type hair cells. The anomalous MT current in hair cells lacking Tmc1 and Tmc2 was blocked by FM1-43, dihydrostreptomycin, and extracellular Ca2+ at concentrations similar to those that blocked wild type. MT channels in the double knockouts carried Ca2+ with a lower permeability than wild-type or single mutants. The MT current in double knockouts persisted during exposure to submicromolar Ca2+, even though this treatment destroyed the tip links. We conclude that the Tmc isoforms do not themselves constitute the MT channel but are essential for targeting and interaction with the tip link. Changes in the MT conductance and Ca2+ permeability observed in the absence of Tmc1 mutants may stem from loss of interaction with protein partners in the transduction complex. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00221295
Volume :
142
Issue :
5
Database :
Academic Search Index
Journal :
Journal of General Physiology
Publication Type :
Academic Journal
Accession number :
91947298
Full Text :
https://doi.org/10.1085/jgp.201311068