Back to Search Start Over

Improbability mapping: A metric for satellite-detection of submarine volcanic eruptions.

Authors :
O'Malley, Robert T.
Behrenfeld, Michael J.
Westberry, Toby K.
Milligan, Allen J.
Reese, Douglas C.
Halsey, Kimberly H.
Source :
Remote Sensing of Environment. Jan2014, Vol. 140, p596-603. 8p.
Publication Year :
2014

Abstract

Abstract: Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed to separate the optical effects of volcanic products from the response of the marine algal community. It is possible to calculate an index, which maps the magnitude of improbable change (relative to long term average conditions) following known volcanic eruptions by using low resolution, initial estimates of chlorophyll and backscatter along with an archived history of satellite data. We apply multivariate probability analysis to changes in global satellite ocean chlorophyll and particulate backscatter data to create a new metric for observing apparent biological responses to submarine eruptions. Several examples are shown, illustrating the sensitivity of our improbability mapping index to known submarine volcanic events, yielding a potentially robust method for the detection of new events in remote locations. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00344257
Volume :
140
Database :
Academic Search Index
Journal :
Remote Sensing of Environment
Publication Type :
Academic Journal
Accession number :
92515536
Full Text :
https://doi.org/10.1016/j.rse.2013.09.029