Back to Search Start Over

Power comparisons for disease clustering tests

Authors :
Kulldorff, Martin
Tango, Toshiro
Park, Peter J.
Source :
Computational Statistics & Data Analysis. Apr2003, Vol. 42 Issue 4, p665. 20p.
Publication Year :
2003

Abstract

Many different methods have been proposed to test for geographical disease clustering, and more generally, for spatial clustering of any type of observations while adjusting for an inhomogeneous background population generating the observations. Despite the many proposed test statistics, there has been few formal comparisons conducted. We present a collection of 1,220,000 simulated benchmark data sets generated under 51 different cluster models and the null hypothesis, to be used for power evaluations. We then use these data sets to compare the power of the spatial scan statistic, the maximized excess events test and the nonparametric <f>M</f> statistic. All have good power, the first having an advantage for localized hot-spot type clusters and the second for global clustering where randomly located cases generate other cases close by. By making the simulated data sets publicly available, new tests can easily be compared with previously evaluated tests by analyzing the same benchmark data. [Copyright &y& Elsevier]

Subjects

Subjects :
*STATISTICS
*GEOGRAPHY

Details

Language :
English
ISSN :
01679473
Volume :
42
Issue :
4
Database :
Academic Search Index
Journal :
Computational Statistics & Data Analysis
Publication Type :
Periodical
Accession number :
9403246
Full Text :
https://doi.org/10.1016/S0167-9473(02)00160-3