Back to Search
Start Over
Repression of Choroidal Neovascularization Through Actin Cytoskeleton Pathways by MicroRNA-24.
- Source :
-
Molecular Therapy . Feb2014, Vol. 22 Issue 2, p378-389. 12p. - Publication Year :
- 2014
-
Abstract
- Actin cytoskeleton is critical for cell motility and division, both of which are important for angiogenesis. MicroRNAs (miRNA/miR) are emerging as pivotal modulators of vascular development and disease. How miRNAs regulate actin cytoskeleton dynamics in endothelial cells (EC) and neovascularization is still unclear. Here, we report that miR-24 regulates actin dynamics in ECs through targeting multiple members downstream of Rho signaling, including Pak4, Limk2, and Diaph1 proteins. Overexpression of miR-24 in ECs blocks stress fiber and lamellipodia formation, represses EC migration, proliferation, and tube formation in vitro, as well as angiogenesis in an ex vivo aortic ring assay. Moreover, subretinal delivery of miR-24 mimics represses laser-induced choroidal neovascularization (CNV) in vivo. Mechanistically, knockdown of miR-24 target protein LIMK2 or PAK4 inhibits stress fiber formation and tube formation in vitro, mimicking miR-24 overexpression phenotype in angiogenesis, while overexpression of LIMK2 and PAK4 by adenoviruses partially rescued the tube formation defects in miR-24 overexpressing ECs. Taken together, these findings suggest that miR-24 represses angiogenesis by simultaneously regulating multiple components in the actin cytoskeleton pathways. Manipulation of actin cytoskeleton pathways by miR-24 may represent an attractive therapeutic solution for the treatment of wet age-related macular degeneration (AMD) and other vascular diseases. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15250016
- Volume :
- 22
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Molecular Therapy
- Publication Type :
- Academic Journal
- Accession number :
- 94232290
- Full Text :
- https://doi.org/10.1038/mt.2013.243