Back to Search Start Over

Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.

Authors :
Yan-Yan Cui
Chen Ling
Yuan-Yuan Zhang
Jian Huang
Jian-Zhong Liu
Source :
Microbial Cell Factories. 2014, Vol. 13 Issue 1, p1-22. 22p. 5 Charts, 5 Graphs.
Publication Year :
2014

Abstract

Background Shikimic acid (SA) produced from the seeds of Chinese star anise (Illicium verum) is a key intermediate for the synthesis of neuraminidase inhibitors such as oseltamivir (Tamiflu®), an anti-influenza drug. However, plants cannot deliver a stable supply of SA. To avoid the resulting shortages and price fluctuations, a stable source of affordable SA is required. Although recent achievements in metabolic engineering of Escherichia coli strains have significantly increased SA productivity, commonly-used plasmid-based expression systems are prone to genetic instability and require constant selective pressure to ensure plasmid maintenance. Cofactors also play an important role in the biosynthesis of different fermentation products. In this study, we first constructed an E. coli SA production strain that carries no plasmid or antibiotic marker. We then investigated the effect of endogenous NADPH availability on SA production. Results The pps and csrB genes were first overexpressed by replacing their native promoter and integrating an additional copy of the genes in a double gene knockout (aroK and aroL) of E. coli. The aroGfbr, aroB, aroE and tktA gene cluster was integrated into the above E. coli chromosome by direct transformation. The gene copy number was then evolved to the desired value by triclosan induction. The resulting strain, E. coli SA110, produced 8.9-fold more SA than did the parental strain E. coli (ΔaroKΔaroL). Following qRT-PCR analysis, another copy of the tktA gene under the control of the 5Ptac promoter was inserted into the chromosome of E. coli SA110 to obtain the more productive strain E. coli SA110. Next, the NADPH availability was increased by overexpressing the pntAB or nadK genes, which further enhanced SA production. The final strain, E. coli SA116, produced 3.12 g/L of SA with a yield on glucose substrate of 0.33 mol/mol. Conclusion An SA-producing E. coli strain that carries neither a plasmid nor an antibiotic marker was constructed by triclosan-induced chromosomal evolution. We present the first demonstration that increasing NADPH availability by overexpressing the pntAB or nadK genes significantly enhances SA production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14752859
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Microbial Cell Factories
Publication Type :
Academic Journal
Accession number :
94481244
Full Text :
https://doi.org/10.1186/1475-2859-13-21