Back to Search Start Over

Expression of Nampt in Hippocampal and Cortical Excitatory Neurons Is Critical for Cognitive Function.

Authors :
Stein, Liana Roberts
Wozniak, David F.
Dearborn, Joshua T.
Shunsuke Kubota
Apte, Rajendra S.
Yukitoshi Izumi
Zorumski, Charles F.
Shin-ichiro Imai
Source :
Journal of Neuroscience. 4/23/2014, Vol. 34 Issue 17, p5800-5815. 16p.
Publication Year :
2014

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an enzyme cofactor or cosubstrate in many essential biological pathways. To date, the primary source of neuronal NAD+ has been unclear. NAD+ can be synthesized from several different precursors, among which nicotinamide is the substrate predominantly used in mammals. The rate-limiting step in the NAD+ biosynthetic pathway from nicotinamide is performed by nicotinamide phosphoribosyltransferase (Nampt). Here, we tested the hypothesis that neurons use intracellular Nampt-mediated NAD+ biosynthesis by generating and evaluating mice lacking Nampt in forebrain excitatory neurons (CaMKIIαNampt-/- mice). CaMKIIαNampt-/- mice showed hippocampal and cortical atrophy, astrogliosis, microgliosis, and abnormal CA1 dendritic morphology by 2-3 months of age. Importantly, these histological changes occurred with altered intrahippocampal connectivity and abnormal behavior; including hyperactivity, some defects in motor skills, memory impairment, and reduced anxiety, but in the absence of impaired sensory processes or long-term potentiation of the Schaffer collateral pathway. These results clearly demonstrate that forebrain excitatory neurons mainly use intracellular Nampt-mediated NAD+ biosynthesis to mediate their survival and function. Studying this particular NAD+ biosynthetic pathway in these neurons provides critical insight into their vulnerability to pathophysiological stimuli and the development of therapeutic and preventive interventions for their preservation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02706474
Volume :
34
Issue :
17
Database :
Academic Search Index
Journal :
Journal of Neuroscience
Publication Type :
Academic Journal
Accession number :
95736634
Full Text :
https://doi.org/10.1523/JNEUROSCI.4730-13.2014