Back to Search Start Over

Ras-Mediated Deregulation of the Circadian Clock in Cancer.

Authors :
Relógio, Angela
Thomas, Philippe
Medina-Pérez, Paula
Reischl, Silke
Bervoets, Sander
Gloc, Ewa
Riemer, Pamela
Mang-Fatehi, Shila
Maier, Bert
Schäfer, Reinhold
Leser, Ulf
Herzel, Hanspeter
Kramer, Achim
Sers, Christine
Source :
PLoS Genetics. May2014, Vol. 10 Issue 5, p1-17. 17p.
Publication Year :
2014

Abstract

Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537390
Volume :
10
Issue :
5
Database :
Academic Search Index
Journal :
PLoS Genetics
Publication Type :
Academic Journal
Accession number :
96281751
Full Text :
https://doi.org/10.1371/journal.pgen.1004338