Back to Search Start Over

Radiative damping and synchronization in a graphene-based terahertz emitter.

Authors :
Moskalenko, A. S.
Mikhailov, S. A.
Source :
Journal of Applied Physics. 2014, Vol. 115 Issue 20, p203110-1-203110-8. 8p. 1 Diagram, 6 Graphs.
Publication Year :
2014

Abstract

We investigate the collective electron dynamics in a recently proposed graphene-based terahertz emitter under the influence of the radiative damping effect, which is included self-consistently in a molecular dynamics approach. We show that under appropriate conditions synchronization of the dynamics of single electrons takes place, leading to a rise of the oscillating component of the charge current. The synchronization time depends dramatically on the applied dc electric field and electron scattering rate and is roughly inversely proportional to the radiative damping rate that is determined by the carrier concentration and the geometrical parameters of the device. The emission spectra in the synchronized state, determined by the oscillating current component, are analyzed. The effective generation of higher harmonics for large values of the radiative damping strength is demonstrated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
115
Issue :
20
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
96318335
Full Text :
https://doi.org/10.1063/1.4879901