Back to Search Start Over

Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1.

Authors :
Hudson, Jason S.
Lei Ding
Vu Le
Lewis, Edwin
Graves, David
Source :
Biochemistry. 5/27/2014, Vol. 53 Issue 20, p3336-3346. 11p.
Publication Year :
2014

Abstract

The specific recognition by proteins of G-quadruplex structures provides evidence of a functional role for in vivo G-quadruplex structures. As previously reported, the ribonucleoprotein, hnRNP Al, and it is proteolytic derivative, unwinding protein 1 (UP1), bind to and destabilize G-quadruplex structures formed by the human telomeric repeat d(TTAGGG)n. UP1 has been proposed to be involved in the recruitment of telomerase to telomeres for chain extension. In this study, a detailed thermodynamic characterization of the binding of UP1 to a human telomeric repeat sequence, the d[AGGG(TTAGGG)3] G-quadruplex, is presented and reveals key insights into the UP1-induced unfolding of the G-quadruplex structure. The UP1-G-quadruplex interactions are shown to be enthalpically driven, exhibiting large negative enthalpy changes for the formation of both the Na+ and K+ G-quadruplex-UP1 complexes (ΔH values of -43 and -19 kcal/mol, respectively). These data reveal three distinct enthalpic contributions from the interactions of UP1 with the Na+ form of G-quadruplex DNA. The initial interaction is characterized by a binding affinity of 8.5 × 108 M-1 (strand), 200 times stronger than the binding of UP1 to a single-stranded DNA with a comparable but non-quadruplex-forming sequence [4.1 × 106 M-1 (strand)]. Circular dichroism spectroscopy reveals the Na+ form of the G-quadruplex to be completely unfolded by UP1 at a binding ratio of 2:1 (UP1:G-quadruplex DNA). The data presented here demonstrate that the favorable energetics of the initial binding event are closely coupled with and drive the unfolding of the G-quadruplex structure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00062960
Volume :
53
Issue :
20
Database :
Academic Search Index
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
96422895
Full Text :
https://doi.org/10.1021/bi500351u