Back to Search Start Over

Self-incompatibility in Brassicaceae crops: lessons for interspecific incompatibility.

Authors :
Hiroyasu Kitashiba
Nasrallah, June B.
Source :
Breeding Science. Mar2014, Vol. 64 Issue 1, p23-37. 15p.
Publication Year :
2014

Abstract

Most wild plants and some crops of the Brassicaceae express self-incompatibility, which is a mechanism that allows stigmas to recognize and discriminate against "self" pollen, thus preventing self-fertilization and inbreeding. Self-incompatibility in this family is controlled by a single S locus containing two multiallelic genes that encode the stigma-expressed S-locus receptor kinase and its pollen coat-localized ligand, the Slocus cysteine-rich protein. Physical interaction between receptor and ligand encoded in the same S locus activates the receptor and triggers a signaling cascade that results in inhibition of "self" pollen. Sequence information for many S-locus haplotypes in Brassica species has spurred studies of dominance relationships between S haplotypes and of S-locus structure, as well as the development of methods for S genotyping. Furthermore, molecular genetic studies have begun to identify genes that encode putative components of the self-incompatibility signaling pathway. In parallel, standard genetic analysis and QTL analysis of the poorly understood interspecific incompatibility phenomenon have been initiated to identify genes responsible for the inhibition of pollen from other species by the stigma. Herewith, we review recent studies of selfincompatibility and interspecific incompatibility, and we propose a model in which a universal polleninhibition pathway is shared by these two incompatibility systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13447610
Volume :
64
Issue :
1
Database :
Academic Search Index
Journal :
Breeding Science
Publication Type :
Academic Journal
Accession number :
96641609
Full Text :
https://doi.org/10.1270/jsbbs.64.23