Back to Search Start Over

Quantum confinement in mixed phase silicon thin films grown by co-deposition plasma processing.

Authors :
Fields, J. D.
McMurray, S.
Wienkes, L. R.
Trask, J.
Anderson, C.
Miller, P. L.
Simonds, B. J.
Kakalios, J.
Kortshagen, U.
Lusk, M. T.
Collins, R. T.
Taylor, P. C.
Source :
Solar Energy Materials & Solar Cells. Oct2014, Vol. 129, p7-12. 6p.
Publication Year :
2014

Abstract

Mixed phase, hydrogenated amorphous and nanocrystalline silicon thin films grown by co-deposition (nanocrystals and amorphous material deposited sequentially in the same vacuum system) demonstrate pronounced quantum confinement effects. Based on photoluminescence measurements of co-deposited samples, we find evidence that the optical gap of nanocrystals embedded in hydrogenated amorphous silicon is increased to energies exceeding bulk crystalline silicon values -- at least as high as 1.35 eV. The broad spectrum of emission of the nanocrystals is attributed to the size distribution and local fluctuations in matrix hydrogenation. The temperature dependence of this PL suggests that these nanocrystals possess fewer defects than those grown by conventional plasma enhanced chemical vapor deposition methods. Interactions between electronic states in nanocrystals and localized states in amorphous silicon matrix tissues are discussed in terms of their role in determining the strength of the quantum confinement potential. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09270248
Volume :
129
Database :
Academic Search Index
Journal :
Solar Energy Materials & Solar Cells
Publication Type :
Academic Journal
Accession number :
97574901
Full Text :
https://doi.org/10.1016/j.solmat.2013.10.028