Back to Search Start Over

Selective removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: Batch and column study.

Authors :
Xiong, Chunhua
Li, Yanli
Wang, Guotao
Fang, Lei
Zhou, Suguo
Yao, Caiping
Chen, Qing
Zheng, Xuming
Qi, Dongming
Fu, Yaqin
Zhu, Yaofeng
Source :
Chemical Engineering Journal. Jan2015, Vol. 259, p257-265. 9p.
Publication Year :
2015

Abstract

A novel chelating resin, polyacrylonitrile-2-amino-1,3,4-thiadiazole (PAN-ATD), was prepared via one-step reaction and its structure was characterized by elemental analysis and FT-IR. The adsorption properties of the resin for Hg(II) were investigated by batch and column experiments. Batch adsorption results showed that PAN-ATD had high affinity towards Hg(II) and the maximum adsorption capacity estimated from the Langmuir model was 526.9 mg/g at 308 K. The adsorption kinetic and equilibrium data were well fitted to the pseudo-second-order model and the Langmuir isotherm model, respectively. Furthermore, the resin can be easily regenerated and reused with less than 10% loss of adsorption capacity. Also, the resin and its metal complexes were studied by SEM, TGA, and energy dispersive X-ray spectroscopy (EDS). With good overall properties (a high selectivity adsorption capacity, easy to be regenerated and stable application capacity) PAN-ATD resin can not only be used in selective removal of Hg(II) from waste solution, but also be used for preparation of the separation and enrichment column applied in the analysis and detection area. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
259
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
98597748
Full Text :
https://doi.org/10.1016/j.cej.2014.07.114