Back to Search Start Over

Galectin-8 elicits pro-inflammatory activities in the endothelium.

Authors :
Cattaneo, Valentina
Tribulatti, María Virginia
Carabelli, Julieta
Carestia, Agostina
Schattner, Mirta
Campetella, Oscar
Source :
Glycobiology. Oct2014, Vol. 24 Issue 10, p966-973. 8p.
Publication Year :
2014

Abstract

Galectins (Gals), a family of mammalian lectins, play diverse roles under physiological and pathological conditions. Here, we analyzed the tandem-repeat Gal-8 synthesis, secretion and effects on the endothelium physiology. Gal-8M and Gal-8L isoforms were secreted under basal conditions by human microvascular endothelial cells (HMEC-1). However, expression and secretion of the Gal-8M isoform, but not Gal-8L, were increased in response to bacterial lipopolysaccharide (LPS) stimulus and returned to control values after LPS removal. Similarly, cell surface Gal-8 exposure was increased after stimulation with LPS. To evaluate Gal-8 effects on the endothelium physiology, HMEC-1 cells were incubated in the presence of recombinant Gal-8M. Pretreated HMEC-1 cells became proadhesive to human normal platelets, indicating that Gal-8 actually activates endothelial cells. This effect was specific for lectin activity as it was prevented by the simultaneous addition of lactose, but not by sucrose. Endothelial cells also increased their exposition of von Willebrand factor after Gal-8 treatment, which constitutes another feature of cell activation that could be, in turn, responsible for the observed platelet adhesion. Several pro-inflammatory molecules were abundantly produced by Gal-8 stimulated endothelial cells: CXCL1 (GRO-α), GM-CSF, IL-6 and CCL5 (RANTES), and in a lower degree CCL2 (MCP-1), CXCL3 (GRO-γ) and CXCL8 (IL-8). In agreement, Gal-8M induced nuclear factor kappa B phosphorylation. Altogether, these results not only confirm the pro-inflammatory role we have already proposed for Gal-8 in other cellular systems but also suggest that this lectin is orchestrating the interaction between leukocytes, platelets and endothelial cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09596658
Volume :
24
Issue :
10
Database :
Academic Search Index
Journal :
Glycobiology
Publication Type :
Academic Journal
Accession number :
98636057
Full Text :
https://doi.org/10.1093/glycob/cwu060