Back to Search Start Over

Boundary-value problems for a nonlinear hyperbolic equation with variable coefficients and the Lévy Laplacian.

Authors :
Feller, M.
Source :
Mathematical Notes. Sep2014, Vol. 96 Issue 3/4, p423-431. 9p.
Publication Year :
2014

Abstract

For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian Δ, we present algorithms for the solution of the boundary-value problem U(0, x) = u, U( t, 0) = u and the exterior boundary-value problem U(0, x) = v, $$\left. {U(t,x)} \right|_{\Gamma = v_1 }$$, $$\lim _{\left\| x \right\|_{H \to \infty } } \left. {U(t,x) = v_2 } \right|$$ for the class of Shilov functions depending on the parameter t. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00014346
Volume :
96
Issue :
3/4
Database :
Academic Search Index
Journal :
Mathematical Notes
Publication Type :
Academic Journal
Accession number :
99008456
Full Text :
https://doi.org/10.1134/S0001434614090144