Back to Search
Start Over
Boundary-value problems for a nonlinear hyperbolic equation with variable coefficients and the Lévy Laplacian.
- Source :
-
Mathematical Notes . Sep2014, Vol. 96 Issue 3/4, p423-431. 9p. - Publication Year :
- 2014
-
Abstract
- For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian Δ, we present algorithms for the solution of the boundary-value problem U(0, x) = u, U( t, 0) = u and the exterior boundary-value problem U(0, x) = v, $$\left. {U(t,x)} \right|_{\Gamma = v_1 }$$, $$\lim _{\left\| x \right\|_{H \to \infty } } \left. {U(t,x) = v_2 } \right|$$ for the class of Shilov functions depending on the parameter t. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00014346
- Volume :
- 96
- Issue :
- 3/4
- Database :
- Academic Search Index
- Journal :
- Mathematical Notes
- Publication Type :
- Academic Journal
- Accession number :
- 99008456
- Full Text :
- https://doi.org/10.1134/S0001434614090144