Back to Search Start Over

Interferometric length metrology for the dimensional control of ultra-stable ring laser gyroscopes.

Authors :
J Belfi
N Beverini
D Cuccato
A Di Virgilio
E Maccioni
A Ortolan
R Santagata
Source :
Classical & Quantum Gravity. 11/21/2014, Vol. 31 Issue 22, p1-1. 1p.
Publication Year :
2014

Abstract

We present the experimental test of a method for controlling the absolute length of the diagonals of square ring laser gyroscopes. The purpose of this is to actively stabilize the ring cavity geometry and to enhance the rotation sensor stability in order to reach the requirements for the detection of the relativistic Lense–Thirring effect with a ground-based array of optical gyroscopes. The test apparatus consists of two optical cavities 1.32 m in length, reproducing the features of the ring cavity diagonal resonators of large-frame He–Ne ring laser gyroscopes. The proposed measurement technique is based on the use of a single diode laser, injection locked to a frequency stabilized He–Ne/iodine frequency standard, and a single electro-optic modulator. The laser is modulated with a combination of three frequencies, allowing us to lock the two cavities to the same resonance frequency and, at the same time, to determine the cavity free spectral range (FSR). We obtain a stable lock of the two cavities to the same optical frequency reference, providing a length stabilization at the level of 1 part in , and the determination of the two FSRs with a relative precision of ∼2 · 10−7. This is equivalent to an error of on the absolute length difference between the two cavities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02649381
Volume :
31
Issue :
22
Database :
Academic Search Index
Journal :
Classical & Quantum Gravity
Publication Type :
Academic Journal
Accession number :
99386391
Full Text :
https://doi.org/10.1088/0264-9381/31/22/225003