Back to Search Start Over

Swelling activated chloride channels in cultured bovine corneal endothelial cells.

Authors :
Srinivas SP
Guan Y
Bonanno JA
Source :
Experimental eye research [Exp Eye Res] 1999 Feb; Vol. 68 (2), pp. 165-77.
Publication Year :
1999

Abstract

Swelling induced enhancement of anion permeability was investigated using the halide-sensitive fluorescent dye SPQ in cultured bovine corneal endothelial cells (BCEC). Rates of anion influx were quantified in terms of the rate of change of SPQ fluorescence during exposure to short duration pulses of Cl-, I-or NO3-while the cells were being perfused with I-, NO3-or Cl-Ringer, respectively. Since SPQ fluorescence is quenched to different extents by these anions, their influx or efflux causes significant changes in fluorescence. The ratio of the maximum rate of change of fluorescence during the pulse period under hyposmotic conditions to that under isosmotic conditions, referred to as the enhancement ratio (ER), was calculated as a measure of the increase in anion permeability. When cells were perfused with NO3-Ringer, exposure to I-pulses yielded an ER=9.0+/-2.6 for 110+/-5 mosmhyposmotic shock. This was higher than with Cl-/I-(6.4+/-0.7) or NO3-/Cl-(3.2+/-0.8) anion-pairs for the same level of shocks. In all cases, the enhancement occurred within approximately 100 seconds after swelling but decreased with continued progress of regulatory volume decrease (RVD). ER returned to approximately 1 within 4 minutes after returning to isosmotic conditions. The membrane potential (Em) depolarized immediately after hyposmotic shock. When cells were depolarized prior to the shocks by high [K+], changes in Emwere relatively small. ER, for the NO3-/I-anion-pair, was significantly reduced by DIDS (100% at 500 microm), NPPB ( approximately 80% at 100 microm) and tamoxifen (approximately 85% at 12 microm). Tamoxifen and NPPB also inhibited swelling induced depolarization. Increasing cationic conductance with Gramicidin D at approximately 2 minutes following hyposmotic shock induced NPPB-inhibitable secondary swelling or accelerated RVD under normal or low Na+conditions, respectively. These results demonstrate that BCEC express swelling activated Cl-channels, which facilitate RVD by enhancing anionic permeability and also by providing a favorable electrical gradient for K+efflux.<br /> (Copyright 1999 Academic Press.)

Details

Language :
English
ISSN :
0014-4835
Volume :
68
Issue :
2
Database :
MEDLINE
Journal :
Experimental eye research
Publication Type :
Academic Journal
Accession number :
10068482
Full Text :
https://doi.org/10.1006/exer.1998.0595