Back to Search
Start Over
Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families.
- Source :
-
Journal of bacteriology [J Bacteriol] 1999 Apr; Vol. 181 (8), pp. 2535-47. - Publication Year :
- 1999
-
Abstract
- Dehalogenases are key enzymes in the metabolism of halo-organic compounds. This paper describes a systematic approach to the isolation and molecular analysis of two families of bacterial alpha-halocarboxylic acid (alphaHA) dehalogenase genes, called group I and group II deh genes. The two families are evolutionarily unrelated and together represent almost all of the alphaHA deh genes described to date. We report the design and evaluation of degenerate PCR primer pairs for the separate amplification and isolation of group I and II deh genes. Amino acid sequences derived from 10 of 11 group I deh partial gene products of new and previously reported bacterial isolates showed conservation of five residues previously identified as essential for activity. The exception, DehD from a Rhizobium sp., had only two of these five residues. Group II deh gene sequences were amplified from 54 newly isolated strains, and seven of these sequences were cloned and fully characterized. Group II dehalogenases were stereoselective, dechlorinating L- but not D-2-chloropropionic acid, and derived amino acid sequences for all of the genes except dehII degrees P11 showed conservation of previously identified essential residues. Molecular analysis of the two deh families highlighted four subdivisions in each, which were supported by high bootstrap values in phylogenetic trees and by enzyme structure-function considerations. Group I deh genes included two putative cryptic or silent genes, dehI degrees PP3 and dehI degrees 17a, produced by different organisms. Group II deh genes included two cryptic genes and an active gene, dehIIPP3, that can be switched off and on. All alphaHA-degrading bacteria so far described were Proteobacteria, a result that may be explained by limitations either in the host range for deh genes or in isolation methods.
- Subjects :
- Amino Acid Sequence
Chlorine metabolism
Conserved Sequence
DNA Primers
DNA, Ribosomal genetics
Hydrolases classification
Molecular Sequence Data
Phylogeny
Polymerase Chain Reaction
Propionates metabolism
Protein Conformation
RNA, Ribosomal, 16S genetics
Sequence Homology, Amino Acid
Substrate Specificity
Bacteria enzymology
Evolution, Molecular
Genes, Bacterial
Hydrolases genetics
Multigene Family
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9193
- Volume :
- 181
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Journal of bacteriology
- Publication Type :
- Academic Journal
- Accession number :
- 10198020
- Full Text :
- https://doi.org/10.1128/JB.181.8.2535-2547.1999