Back to Search Start Over

Effects of A1-adenosine receptor antagonists on purinergic transmission in the guinea-pig vas deferens in vitro.

Authors :
Hardy TA
Brock JA
Source :
British journal of pharmacology [Br J Pharmacol] 1999 Apr; Vol. 126 (8), pp. 1761-8.
Publication Year :
1999

Abstract

1. Intracellularly recorded excitatory junction potentials (ej.ps) were used to study the effects of adenosine receptor antagonists on neurotransmitter release from postganglionic sympathetic nerve terminals in the guinea-pig vas deferens in vitro. 2. The A1 adenosine receptor antagonists, 8-phenyltheophylline (10 microM) and 8-cyclopentyl-1,3-dipropylxanthine (0.1 microM), increased the amplitude of e.j.ps evoked during trains of 20 stimuli at 1 Hz in the presence, but not in the absence, of the alpha2-adrenoceptor antagonist, yohimbine (1 microM) or the non-selective alpha-adrenoceptor antagonist, phentolamine (1 microM). 3. Adenosine (100 microM) reduced the amplitude of e.j.ps, both in the presence and in the absence of phentolamine (1 microM). This inhibitory effect of adenosine is most likely caused by a reduction in transmitter release as there was no detectable change in spontaneous ej.p. amplitudes. 4. In the presence of phentolamine, application of the adenosine uptake inhibitor, S-(p-nitrobenzyl)-6-thioinosine (0.1 microM), had no effect on ej.p. amplitudes. 5. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (100 microM), significantly increased the amplitudes of all e.j.ps evoked during trains of 20 stimuli at 1 Hz, both in the presence and in the absence of phentolamine (1 microM). 6. These results suggest that endogenous adenosine modulates neurotransmitter release by an action at prejunctional A1 adenosine receptors only when alpha2-adrenoceptors are blocked.

Details

Language :
English
ISSN :
0007-1188
Volume :
126
Issue :
8
Database :
MEDLINE
Journal :
British journal of pharmacology
Publication Type :
Academic Journal
Accession number :
10372818
Full Text :
https://doi.org/10.1038/sj.bjp.0702514