Back to Search
Start Over
Dietary polyunsaturated fatty acids and hepatic gene expression.
- Source :
-
Lipids [Lipids] 1999; Vol. 34 Suppl, pp. S209-12. - Publication Year :
- 1999
-
Abstract
- Dietary polyunsaturated fatty acids (PUFA) have profound effects on hepatic gene transcription leading to significant changes in lipid metabolism. PUFA rapidly suppress transcription of genes encoding specific lipogenic and glycolytic enzymes and induce genes encoding specific peroxisomal and cytochrome P450 (CYP) enzymes. Using the peroxisome proliferator-activated receptor alpha (PPAR alpha)-null mouse, we showed that dietary PUFA induction of acyl CoA oxidase (AOX) and CYP4A2 require PPAR alpha. However, PPAR alpha is not required for the PUFA-mediated suppression of fatty acid synthase (FAS), S14, or L-pyruvate kinase (L-PK). Studies in primary rat hepatocytes and cultured 3T3-L1 adipocytes showed that metabolites of 20:4n-6, like prostaglandin E2 (PGE2), suppress mRNA encoding FAS, S14, and L-PK through a Gi/Go-coupled signal transduction cascade. In contrast to adipocytes, 20:4n-6-mediated suppression of lipogenic gene expression in hepatic parenchymal cells does not require cyclooxygenase. Transfection analysis of S14CAT fusion genes in primary hepatocytes shows that peroxisome proliferator-activated PPAR alpha acts on the thyroid hormone response elements (-2.8/-2.5 kb). In contrast, both PGE2 and 20:4n-6 regulate factors that act on the proximal promoter (-150/-80 bp) region, respectively. In conclusion, PUFA affects hepatic gene transcription through at least three distinct mechanisms: (i) a PPAR-dependent pathway, (ii) a prostanoid pathway, and (iii) a PPAR and prostanoid-independent pathway. PUFA regulation of hepatic lipid metabolism involves an integration of these multiple pathways.
- Subjects :
- Animals
Cells, Cultured
Gene Expression Regulation drug effects
Liver drug effects
Mice
Mice, Knockout
Microbodies drug effects
Microbodies physiology
Models, Biological
Rats
Receptors, Cytoplasmic and Nuclear deficiency
Receptors, Cytoplasmic and Nuclear genetics
Recombinant Fusion Proteins biosynthesis
Transcription Factors deficiency
Transcription Factors genetics
Transfection
Dietary Fats, Unsaturated pharmacology
Gene Expression Regulation physiology
Liver metabolism
Receptors, Cytoplasmic and Nuclear physiology
Transcription Factors physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0024-4201
- Volume :
- 34 Suppl
- Database :
- MEDLINE
- Journal :
- Lipids
- Publication Type :
- Academic Journal
- Accession number :
- 10419152
- Full Text :
- https://doi.org/10.1007/BF02562292