Back to Search
Start Over
DNA damage-related gene expression as biomarkers to assess cellular response after gamma irradiation of a human lymphoblastoid cell line.
- Source :
-
Oncogene [Oncogene] 2000 Feb 17; Vol. 19 (7), pp. 916-23. - Publication Year :
- 2000
-
Abstract
- Since defects in molecular mechanisms controlling DNA repair, cell cycle checkpoint and apoptosis could modify cellular sensitivity to DNA damaging agents, we have conducted a multiparametric molecular analysis for better understanding the regulation pathways leading to cell survival or cell death after irradiation. Using a human lymphoblastoid cell line, we have analysed, following gamma irradiation (0.5, 1, 2, 4, 8, 16 and 32 Gy, at 0.5, 24, 48 and 72 h after treatment), the correlation between proliferation, cell cycle analysis, apoptosis and micronuclei frequency with the expression of TP53, WAF1, DNA LIGASE 1, PCNA, BAX, BLC-2, BAK, DAD1, ICH1-Long and -Short forms mRNAs. We have found that whereas TP53, BAK, ICH1-Short form, and DAD1 were expressed at constant levels, WAF1, PCNA, BAX were up-regulated, ICH1-Long form, DNA LIGASE 1, and BCL-2 were down-regulated. These modifications of expression were significantly correlated with doses, survival, proliferation, cell cycle delays, and apoptosis. A positive correlation of WAF1 and BAX, and a borderline negative correlation with BCL-2 expressions were observed with micronuclei frequency for doses ranging from 0.5 to 4 Gy. In conclusion, our data clearly demonstrate that gene expression profiling, which is easier and more rapid to conduct than the assessments of classical phenotypic responses, could be useful to improve knowledge concerning pathways involved in cellular response to irradiation, knowing that such biomarkers could constitute tools to assess radio-sensitivity/radio-resistance. Oncogene (2000) 19, 916 - 923.
- Subjects :
- Apoptosis drug effects
Apoptosis radiation effects
Biomarkers analysis
Cell Count drug effects
Cell Count radiation effects
Cell Cycle drug effects
Cell Cycle radiation effects
Cell Death drug effects
Cell Death radiation effects
Cell Line, Transformed
Cell Nucleus drug effects
Cell Nucleus radiation effects
Cytochalasin B pharmacology
Gene Expression Regulation drug effects
Humans
Micronucleus Tests
Tumor Cells, Cultured
DNA Damage radiation effects
Gamma Rays
Gene Expression Regulation radiation effects
Lymphocytes radiation effects
Subjects
Details
- Language :
- English
- ISSN :
- 0950-9232
- Volume :
- 19
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Oncogene
- Publication Type :
- Academic Journal
- Accession number :
- 10702800
- Full Text :
- https://doi.org/10.1038/sj.onc.1203405