Back to Search
Start Over
Improved phase-contrast flow quantification by three-dimensional vessel localization.
- Source :
-
Magnetic resonance imaging [Magn Reson Imaging] 2000 Jul; Vol. 18 (6), pp. 697-706. - Publication Year :
- 2000
-
Abstract
- In this paper, a method of three-dimensional (3D) vessel localization is presented to allow the identification of a vessel of interest, the selection of a vessel segment, and the determination of a slice orientation to improve the accuracy of phase-contrast magnetic resonance (PCMR) angiography. A marching-cube surface-rendering algorithm was used to reconstruct the 3D vasculature. Surface-rendering was obtained using an iso-surface value determined from a maximum intensity projection (MIP) image. This 3D vasculature was used to find a vessel of interest, select a vessel segment, and to determine the slice orientation perpendicular to the vessel axis. Volumetric flow rate (VFR) was obtained in a phantom model and in vivo using 3D localization with double oblique cine PCMR scanning. PCMR flow measurements in the phantom showed 5. 2% maximum error and a standard deviation of 9 mL/min during steady flow, 7.9% maximum error and a standard deviation of 13 mL/min during pulsatile flow compared with measurements using an ultrasonic transit-time flowmeter. PCMR VFR measurement error increased with misalignment at 10, 20, and 30 degrees oblique to the perpendicular slice in vitro and in vivo. The 3D localization technique allowed precise localization of the vessel of interest and optimal placement of the slice orientation for minimum error in flow measurements.
- Subjects :
- Blood Flow Velocity
Brain blood supply
Carotid Arteries physiology
Cerebral Arteries anatomy & histology
Cerebral Arteries physiology
Humans
Magnetic Resonance Imaging, Cine methods
Regional Blood Flow
Brain anatomy & histology
Carotid Arteries anatomy & histology
Magnetic Resonance Angiography methods
Subjects
Details
- Language :
- English
- ISSN :
- 0730-725X
- Volume :
- 18
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Magnetic resonance imaging
- Publication Type :
- Academic Journal
- Accession number :
- 10930779
- Full Text :
- https://doi.org/10.1016/s0730-725x(00)00157-0