Back to Search Start Over

Effects of des-aspartate-angiotensin I on angiotensin II-induced incorporation of phenylalanine and thymidine in cultured rat cardiomyocytes and aortic smooth muscle cells.

Authors :
Min L
Sim MK
Xu XG
Source :
Regulatory peptides [Regul Pept] 2000 Nov 24; Vol. 95 (1-3), pp. 93-7.
Publication Year :
2000

Abstract

Des-aspartate-angiotensin I, a pharmacologically active nine-amino acid angiotensin peptide, and losartan, an AT(1) angiotensin receptor antagonist, but not angiotensin-(1-7), another active angiotensin peptide, completely attenuated the angiotensin II-induced incorporation of [3H]phenylalanine in cultured rat cardiomyocytes. The attenuation by des-aspartate-angiotensin I but not that of losartan was inhibited by indomethacin. The data support an earlier suggestion that the nonapeptide attenuates cardiac hypertrophy in rats via an indomethacin-sensitive angiotensin AT(1) receptor subtype. In rat aortic smooth muscle cells, both des-aspartate-angiotensin I and angiotensin-(1-7) had no effect on the angiotensin II-induced [3H]phenylalanine incorporation. However, the two peptides significantly attenuated the angiotensin II-induced [3H]thymidine incorporation in the smooth muscle cells. The attenuation by angiotensin-(1-7) but not by des-aspartate-angiotensin I was inhibited by (D-Ala(7))-angiotensin-(1-7), a specific angiotensin-(1-7) antagonist. Des-aspartate-angiotensin I also attenuated FCS-stimulated [3H]thymidine incorporation. This attenuation was inhibited by the peptide angiotensin receptor antagonist, (Sar(1), Ile(8))-angiotensin II, but not by losartan. These data indicate that des-aspartate-angiotensin I and angiotensin-(1-7) do not participate in the process of protein synthesis in vascular smooth muscle cells and that the nonapeptide and heptapeptide act on different non-AT(1) receptors to mediate their anti-hyperplasic action. Although the exact mechanisms of action remain to be elucidated, the findings indicate that des-aspartate-angiotensin I acts as an agonist on angiotensin AT(1) and non-AT(1) receptor subtypes and induces responses that oppose the actions of angiotensin II.

Details

Language :
English
ISSN :
0167-0115
Volume :
95
Issue :
1-3
Database :
MEDLINE
Journal :
Regulatory peptides
Publication Type :
Academic Journal
Accession number :
11062338
Full Text :
https://doi.org/10.1016/s0167-0115(00)00162-2