Back to Search
Start Over
Targeted overexpression of IGF-I in smooth muscle cells of transgenic mice enhances neointimal formation through increased proliferation and cell migration after intraarterial injury.
- Source :
-
Endocrinology [Endocrinology] 2001 Aug; Vol. 142 (8), pp. 3598-606. - Publication Year :
- 2001
-
Abstract
- The response of arterial smooth muscle cells to injury is governed by a complex series of events. Significant among them is the paracrine production of peptide growth factors. To determine the impact of local IGF-I gene expression on vascular injury, the left carotid arteries of SMP8-IGF-I mice (in which IGF-I is selectively overexpressed in smooth muscle cells by means of a smooth muscle alpha-actin promoter) and wild-type controls were injured mechanically with an epon resin probe. After 7 and 14 d, a progressive increase in medial area was seen in both SMP8-IGF-I and wild-type mice, but they were not significantly different from each other. However, by 14 d there was a more than 4-fold increase in neointimal area in transgenic vs. wild-type. The intima/media ratios were also strikingly increased at 14 d in the IGF-I-overexpressing animals. The mitotic index, determined in animals injected daily with bromodeoxyuridine for 3 d before death, was markedly elevated in both the media and neointima 7 d after injury in SMP8-IGF-I mice, but the effect had subsided by 14 d. Despite a higher rate of cell division, the relative increase in medial area was less in the SMP8-IGF-I mice than in wild-type mice at both 7 and 14 d, consistent with a stimulation of cell migration to the neointima. The experiments reported here provide compelling evidence that paracrine expression of IGF-I is a powerful stimulus for smooth muscle cell proliferation and migration in vivo.
- Subjects :
- Actins metabolism
Animals
Cell Division drug effects
Cell Movement drug effects
Insulin-Like Growth Factor I genetics
Mice
Mice, Transgenic genetics
Muscle, Smooth, Vascular pathology
Muscle, Smooth, Vascular physiopathology
RNA, Messenger metabolism
Tunica Intima drug effects
Carotid Artery Injuries pathology
Carotid Artery Injuries physiopathology
Insulin-Like Growth Factor I pharmacology
Muscle, Smooth, Vascular drug effects
Tunica Intima growth & development
Subjects
Details
- Language :
- English
- ISSN :
- 0013-7227
- Volume :
- 142
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Endocrinology
- Publication Type :
- Academic Journal
- Accession number :
- 11459808
- Full Text :
- https://doi.org/10.1210/endo.142.8.8331