Back to Search
Start Over
Potential double-flipping mechanism by E. coli MutY.
- Source :
-
Progress in nucleic acid research and molecular biology [Prog Nucleic Acid Res Mol Biol] 2001; Vol. 68, pp. 349-64. - Publication Year :
- 2001
-
Abstract
- To understand the structural basis of the recognition and removal of specific mismatched bases in double-stranded DNAs by the DNA repair glycosylase MutY, a series of structural and functional analyses have been conducted. MutY is a 39-kDa enzyme from Escherichia coli, which to date has been refractory to structural determination in its native, intact conformation. However, following limited proteolytic digestion, it was revealed that the MutY protein is composed of two modules, a 26-kDa domain that retains essential catalytic function (designated p26MutY) and a 13-kDa domain that is implicated in substrate specificity and catalytic efficiency. Several structures of the 26-kDa domain have been solved by X-ray crystallographic methods to a resolution of up to 1.2 A. The structure of a catalytically incompetent mutant of p26MutY complexed with an adenine in the substrate-binding pocket allowed us to propose a catalytic mechanism for MutY. Since reporting the structure of p26MutY, significant progress has been made in solving the solution structure of the noncatalytic C-terminal 13-kDa domain of MutY by NMR spectroscopy. The topology and secondary structure of this domain are very similar to that of MutT, a pyrophosphohydrolase. Molecular modeling techniques employed to integrate the two domains of MutY with DNA suggest that MutY can wrap around the DNA and initiate catalysis by potentially flipping adenine and 8-oxoguanine out of the DNA helix.
- Subjects :
- Adenine metabolism
Amino Acid Sequence
Bacterial Proteins chemistry
Base Pair Mismatch
Carbon-Oxygen Lyases chemistry
Carbon-Oxygen Lyases physiology
Catalysis
Catalytic Domain
DNA Damage
DNA, Bacterial genetics
DNA, Bacterial metabolism
DNA-(Apurinic or Apyrimidinic Site) Lyase
Deoxyribonuclease IV (Phage T4-Induced)
Escherichia coli genetics
Guanine metabolism
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular Sequence Data
N-Glycosyl Hydrolases chemistry
Phosphoric Monoester Hydrolases chemistry
Protein Conformation
Protein Structure, Tertiary
Pyrophosphatases
Sequence Alignment
Sequence Homology, Amino Acid
Structure-Activity Relationship
Substrate Specificity
Adenine analogs & derivatives
Bacterial Proteins physiology
DNA Glycosylases
DNA Repair
Escherichia coli enzymology
Escherichia coli Proteins
Guanine analogs & derivatives
N-Glycosyl Hydrolases physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0079-6603
- Volume :
- 68
- Database :
- MEDLINE
- Journal :
- Progress in nucleic acid research and molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 11554310
- Full Text :
- https://doi.org/10.1016/s0079-6603(01)68111-x