Back to Search Start Over

Genetic analysis of alpha-latrotoxin receptors reveals functional interdependence of CIRL/latrophilin 1 and neurexin 1 alpha.

Authors :
Tobaben S
Südhof TC
Stahl B
Source :
The Journal of biological chemistry [J Biol Chem] 2002 Feb 22; Vol. 277 (8), pp. 6359-65. Date of Electronic Publication: 2001 Dec 06.
Publication Year :
2002

Abstract

alpha-Latrotoxin triggers massive neurotransmitter release from nerve terminals by binding to at least two distinct presynaptic receptors, neurexin 1 alpha and CIRL1/latrophilin1 (CL1). We have now generated knockout (KO) mice that lack CL1 and analyzed them alone or in combination with neurexin 1 alpha KO mice. Mice lacking only CL1, or both CL1 and neurexin 1 alpha, were viable and fertile. Ca(2+)-independent binding of alpha-latrotoxin to brain membranes was impaired similarly in CL1 single and in CL1/neurexin 1 alpha double KO mice (approximately 75% decrease) but not in neurexin 1 alpha single KO mice. In contrast, Ca(2+)-dependent binding (approximately 2 times above Ca(2+)-independent binding) was altered in both CL1 (approximately 50% decrease) and neurexin 1 alpha single KO mice (approximately 25% decrease) and was decreased further in double KO mice (approximately 75% decrease). Synaptosomes lacking CL1 exhibited the same decrease in alpha-latrotoxin-stimulated glutamate release in the presence and absence of Ca(2+) (approximately 75%). In contrast, synaptosomes lacking neurexin 1 alpha exhibited only a small decrease in alpha-latrotoxin-triggered release in the absence of Ca(2+) (approximately 20%) but a major decrease in the presence of Ca(2+) (approximately 75%). Surprisingly, synaptosomes lacking both CL1 and neurexin 1 alpha displayed a relatively smaller decrease in alpha-latrotoxin-stimulated glutamate release than synaptosomes lacking only CL1 in the absence of Ca(2+) (approximately 50 versus approximately 75%), but the same decrease in the presence of Ca(2+) (approximately 75%). Our data suggest the following two major conclusions. 1) CL1 and neurexin 1 alpha together account for the majority (75%) of alpha-latrotoxin receptors in brain, with the remaining receptor activity possibly due to other CL and neurexin isoforms, and 2) the two receptors act additively in binding alpha-latrotoxin but not in triggering release. Together these data suggest that the two receptors act autonomously in binding of alpha-latrotoxin but cooperatively in transducing the stimulation of neurotransmitter release by alpha-latrotoxin.

Details

Language :
English
ISSN :
0021-9258
Volume :
277
Issue :
8
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
11741895
Full Text :
https://doi.org/10.1074/jbc.M111231200