Back to Search
Start Over
Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo.
- Source :
-
Circulation research [Circ Res] 2002 Mar 22; Vol. 90 (5), pp. 609-16. - Publication Year :
- 2002
-
Abstract
- Although protein kinase C (PKC) activation is required for endothelial cell (EC) growth, migration, adhesion, and vessel formation, the role of individual PKC isoenzymes in these events is not defined. Because PKCalpha has been previously linked with enhanced EC migration and response to angiogenic growth factors, we characterized a specific phosphorothioate-modified 21-mer antisense PKCalpha (AS-PKCalpha). AS-PKCalpha (500 nmol/L) prevented the expression of PKCalpha protein by 90% in human ECs and did not reduce the expression of any other PKC isoenzyme. AS-PKCalpha reduced human EC migration by 64% compared with its control oligonucleotide in a "scratch" wounding assay, and AS-PKCalpha reduced human EC adhesion to the extracellular matrix protein vitronectin by 18%. Phosphorylation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) induced by vascular endothelial growth factor was inhibited by 30% in human ECs transfected with AS-PKCalpha. Compared with control, AS-PKCalpha also reduced the number of EC tubes formed in a 3D type I collagen gel assay by 37.5%. Finally, using an osmotic minipump, we infused AS-PKCalpha into mice in which myocardial infarction was induced by coronary ligation and found that the oligonucleotide was primarily taken up by intramyocardial blood vessels. Compared with the results with control oligonucleotide, AS-PKCalpha oligonucleotide inhibited the number of anti-PKCalpha-stained blood vessels by 48% and reduced the total vessel number by 72% as well. In conclusion, the expression of PKCalpha is required for full EC migration, adhesion to vitronectin, vascular endothelial growth factor-induced extracellular signal-regulated kinase activation, and tube formation and is likely to be of importance in myocardial angiogenesis in vivo after ischemia.
- Subjects :
- Animals
Cell Adhesion drug effects
Cell Division drug effects
Cells, Cultured
Coronary Vessels drug effects
Coronary Vessels metabolism
Endothelial Growth Factors pharmacology
Endothelium, Vascular cytology
Endothelium, Vascular drug effects
Gene Expression drug effects
Humans
Isoenzymes genetics
Isoenzymes metabolism
Ligation
Lymphokines pharmacology
MAP Kinase Kinase Kinase 3
MAP Kinase Kinase Kinases metabolism
Male
Mice
Mice, Inbred C57BL
Mitogen-Activated Protein Kinase 3
Mitogen-Activated Protein Kinases metabolism
Myocardial Infarction drug therapy
Myocardial Infarction pathology
Myocardial Revascularization
Neovascularization, Physiologic drug effects
Oligonucleotides, Antisense pharmacology
Organ Specificity
Phosphorylation drug effects
Protein Kinase C genetics
Protein Kinase C metabolism
Protein Kinase C-alpha
Signal Transduction drug effects
Signal Transduction physiology
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factors
Vitronectin metabolism
Cell Movement drug effects
Endothelium, Vascular metabolism
Isoenzymes antagonists & inhibitors
Myocardial Infarction metabolism
Neovascularization, Physiologic physiology
Protein Kinase C antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 1524-4571
- Volume :
- 90
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Circulation research
- Publication Type :
- Academic Journal
- Accession number :
- 11909826
- Full Text :
- https://doi.org/10.1161/01.res.0000012503.30315.e8