Back to Search
Start Over
Cilnidipine is a novel slow-acting blocker of vascular L-type calcium channels that does not target protein kinase C.
- Source :
-
Journal of hypertension [J Hypertens] 2002 May; Vol. 20 (5), pp. 885-93. - Publication Year :
- 2002
-
Abstract
- Cilnidipine is a novel dihydropyridine (DHP) antagonist. However, its pharmacological effects on vascular DHP-sensitive L-type channels and protein kinase C (PKC)-mediated arterial contraction is incompletely understood. To address this issue, we studied the effects of cilnidipine on multi-subunit, C-class L-type Ca2+ channels in rat aortic A7r5 cells, as well as on Ca2+ channel (L-type) alpha1C-b and (T-type) alpha1G subunits in the Xenopus oocyte expression system. Cilnidipine dose- and time-dependently inhibited Ba2+ currents in A7r5 cells, with half-maximal inhibitions (IC50) at 10 nmol/l after 10 min. Unlike classical pharmacological Ca2+ channel blockers, cilnidipine's block of Ca2+ currents did not reach steady-state levels within 10 min, indicating steady-state half-maximal inhibition of native, multi-subunit L-type channels at < 10 nmol/l. In contrast, smooth muscle alpha1Cb currents were blocked by cilnidipine at much higher doses (steady-state IC50, 20 micromol/l) whereas alpha1G currents were not inhibited by cilnidipine (30 micromol/l). Cilnidipine dose-dependently inhibited depolarization- and Ca2+-induced contractions of rat aortic rings, with an IC50 of 10 nmol/l at 10 min. However, the onset of the effects was very slow, with approximately 71% inhibition by 3 nmol/l cilnidipine after 90 min exposure to cilnidipine. In contrast, cilnidipine did not inhibit phorbol 12-myristate-13-acetate (100 nmol/l)-mediated contractions. We conclude that cilnidipine represents an extremely slow-acting DHP that targets multi-subunit L-type channels, but not PKC in arterial smooth muscle. Because cilnidipine is less potent in cells expressing the pore-forming alpha1C-b subunit, the data further suggest that this unique slow-acting mechanism of cilnidipine is mediated by a complex interaction of cilnidipine with alpha1C-b and accessory channel subunits.
- Subjects :
- Animals
Aorta drug effects
Aorta physiology
Calcium pharmacology
Calcium Channels, L-Type physiology
Cell Line
Electric Conductivity
Electrophysiology
Protein Isoforms physiology
Protein Kinase C metabolism
Rats
Tetradecanoylphorbol Acetate pharmacology
Vasoconstriction drug effects
Calcium Channel Blockers pharmacology
Calcium Channels, L-Type drug effects
Dihydropyridines pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 0263-6352
- Volume :
- 20
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Journal of hypertension
- Publication Type :
- Academic Journal
- Accession number :
- 12011649
- Full Text :
- https://doi.org/10.1097/00004872-200205000-00023