Back to Search
Start Over
Glial fibrillary acidic protein is greatly modified by oxidative stress in aceruloplasminemia brain.
- Source :
-
Free radical research [Free Radic Res] 2002 Mar; Vol. 36 (3), pp. 303-6. - Publication Year :
- 2002
-
Abstract
- Aceruloplasminemia is an autosomal recessive disorder of iron metabolism caused by mutations in the ceruloplasmin (Cp) gene. The neuropathological hallmark of this disease is intracellular iron overload, which is thought to lead to neuronal cell death through increased oxidative stress. We evaluated and characterized protein oxidation in the brain of a patient with this disease. The protein carbonyl content in the cerebral cortex of the patient was elevated compared to controls. Furthermore, peptide mass fingerprinting and partial amino acid sequencing identified glial fibrillary acidic protein (GFAP) as the major carbonylated protein in the cerebral cortex of the patient. In conjunction with the facts that Cp mainly localizes to astrocytes in the central nervous system and that astrocytes are loaded with much more iron than neurons in the cerebral cortex, our findings indicate that Cp deficiency may primarily damage astrocytes. We speculate that the dysfunction of astrocytes may be causatively related to neuronal cell loss in aceruloplasminemia.
- Subjects :
- Brain metabolism
Brain pathology
Brain Diseases etiology
Electrophoresis, Gel, Two-Dimensional
Female
Humans
Lipid Peroxidation
Malondialdehyde
Middle Aged
Mutation
Neurons metabolism
Neurons pathology
Peptide Fragments analysis
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Brain Diseases metabolism
Ceruloplasmin deficiency
Glial Fibrillary Acidic Protein metabolism
Oxidative Stress
Subjects
Details
- Language :
- English
- ISSN :
- 1071-5762
- Volume :
- 36
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Free radical research
- Publication Type :
- Academic Journal
- Accession number :
- 12071349
- Full Text :
- https://doi.org/10.1080/10715760290019327