Back to Search
Start Over
Ligand substitution, pH dependent deoxygenation, and linkage isomerization reactions of the 2,2'-bipyridinetetranitroruthenate dianion.
- Source :
-
Inorganic chemistry [Inorg Chem] 2002 Jul 29; Vol. 41 (15), pp. 3820-9. - Publication Year :
- 2002
-
Abstract
- The reaction of the [Ru(bpy)(NO(2))(4)](2-) (bpy = 2,2'-bipyridine) ion in aqueous solutions produces two different nitrosyl complexes, depending on the pH of the solution. At acidic pH, complex cis,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) was isolated. At neutral or basic pH, [Ru(bpy)(NO(2))(4)](2-) reacts to give cis,trans-Ru(bpy)(NO(2))(2)(NO)(OH). Both new complexes were fully characterized by elemental analysis and UV-vis, IR, (1)H NMR, and (15)N NMR spectroscopy. A single-crystal X-ray structure of cis,trans-Ru(bpy)(NO(2))(2)(NO)(OH) was also obtained. cis,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) isomerizes in acetone or water solution to give a mixture of the trans,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) and cis,cis-Ru(bpy)(ONO)(2)(NO(2))(NO) linkage isomers as determined by (1)H and (15)N NMR spectroscopy. A single-crystal X-ray structure of a solid solution of cis,cis-Ru(bpy)(ONO)(2)(NO(2))(NO)/trans,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) was also obtained. This pair of isomers is the first crystallographically characterized compound with nitro, nitrito, and nitrosyl ligands. The kinetic studies of the Ru-NO(2) --> Ru-NO conversion reactions of [Ru(bpy)(NO(2))(4)](2)(-) in buffered solutions from pH 3 to pH 9 complement previous studies of the reverse reaction. The reactions are first order in [Ru(bpy)(NO(2))(4)](2-). At high pH, the reaction is independent of the concentration of H(+) while, at low pH, the reaction is first order in the concentration of H(+). The rate determining step of the high pH reaction involves breakage of the Ru-NO(2) bond while, at low pH, the mechanism involves a rapid reversible protonation of a NO(2) ligand followed by the rate determining loss of hydroxide to produce a nitrosyl ligand.
Details
- Language :
- English
- ISSN :
- 0020-1669
- Volume :
- 41
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Inorganic chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 12132905
- Full Text :
- https://doi.org/10.1021/ic0255205