Back to Search Start Over

Cyclooctatetraene computational photo- and thermal chemistry: a reactivity model for conjugated hydrocarbons.

Authors :
Garavelli M
Bernardi F
Cembran A
Castaño O
Frutos LM
Merchán M
Olivucci M
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2002 Nov 20; Vol. 124 (46), pp. 13770-89.
Publication Year :
2002

Abstract

We use ab initio CASSCF and CASPT2 computations to construct the composite multistate relaxation path relevant to cycloocta-1,3,5,7-tetraene singlet photochemistry. The results show that an efficient population of the dark excited state (S(1)) takes place after ultrafast decay from the spectroscopic excited state (S(2)). A planar D(8)(h)-symmetric minimum represents the collecting point on S(1). Nonadiabatic transitions to S(0) appear to be controlled by two different tetraradical-type conical intersections, which are directly accessible from the S(1) minimum following specific excited-state reaction paths. The higher-energy conical intersection belongs to the same type of intersections previously documented in linear and cyclic conjugated hydrocarbons and features a triangular -(CH)(3)- kink. This point mediates both cis --> trans photoisomerization and cyclopropanation reactions. The lowest energy conical intersection has a boat-shaped structure. This intersection accounts for production of semibullvalene or for double-bond shifting. The mapping of both photochemical and thermal reaction paths (including also Cope rearrangements, valence isomerizations, ring inversions, and double-bond shifting) has allowed us to draw a comprehensive reactivity scheme for cyclooctatetraene, which rationalizes the experimental observations and documents the complex network of photochemical and thermal reaction path interconnections. The factors controlling the selection and accessibility of a number of conjugated hydrocarbon prototype conical intersections and ground-state relaxation channels are discussed.

Details

Language :
English
ISSN :
0002-7863
Volume :
124
Issue :
46
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
12431107
Full Text :
https://doi.org/10.1021/ja020741v